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Theories for the development of rolling 
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Two alternative models for the development of texture in rolled polyoxymethylene are 
developed. The first proposes that slip systems in the crystalline phase are the main defor- 
mation mechanisms, and calculates crystal rotations on the assumption of a uniform 
stress state in rolling. The second develops Wilchinsky's model of rigid crystals rotating in 
a deforming amorphous matrix. The former is shown to be in better agreement with 
experimental data. 

1. I n t r o d u c t i o n  
The crystalline texture (distribution of orien- 
tations) of uniaxially rolled polyoxymethylene 
(POM) has been investigated a number of times 
recently. Such texture is described by the orien- 
tation distribution of particular directions in 
the hexagonal unit cell of a crystal (such as the 
polymer chain direction [0 0 0 1] or the pole of a 
prismatic face such as [1 0 i -0] )  with respect to 
the rolling direction R, the transverse direction T 
and the sheet normal N. In particular idealized 
components of the overall texture can be de- 
scribed in the form {1 21 0}(1 0 i-0) which means 
that one of the set of {1 21 0} planes is parallel to 
the sheet plane and one of the (1 010)directions 
is parallel to R. Gezovich and Geil [1 ] rolled 3 mm 
thick injection moulded bars of POM and found 
that at 50% thickness reduction the main texture 
was of [0 0 0 1] at +- 30 ~ to R in the RN plane and 
random (10]-0)  poles about these positions, 
whereas at 70% thickness reduction the main 
element was a [0 0 0 1 ] fibre texture (the [0 0 0 1 ] 
axis along R but with [1 0]-0] randomly spread 
in the N T  plane). A major difference between this 
and later work was in the use of injection moulded 
bars, which have been shown to have a complex 
microstructure consisting of 0.1mm of row 
nucleated skin with a nearly ideal [0 0 0 1 ] fibre 
texture, and only the central 1 mm of random 
spherulites, the intervening layers being of an 

intermediate transcrystalline nature [2]. Most 
other workers have used compression moulded 
sheet which should be entirely spherulitic. 
Starkweather et al. [3] found that for a 17% 
thickness reduction a {1 21 0} (1 0 ]-0) texture 
developed in POM sheet. Preedy and Wheeler [4] 
gave POM sheet a 60% thickness reduction at sub- 
ambient temperatures and concluded that a phase 
change to a orthorhombic phase with a (1 00) 
[0 0 1 ] texture had occurred. Finally, Chang et  al. 

[5] reduced POM sheet by 73% at 126~ by 
Steckel rolling and found a strong {I0i-0} 
[0 0 0 1 ] texture. 

Previous workers have disagreed over the defor- 
mation mechanisms that occur in the plastic 
deformation of POM. Gezovich and Geil [1] 
observed the [000  I] crystal axis tilted with 
respect to the surface of the lamellar crystals. 
However, slip on {1 010}  planes in the [000  1] 
direction was ruled out on the (erroneous) grounds 
that each {1 0]-0} plane must slip simultaneously 
by at least one c spacing of the unit cell and hence 
[000  1] would immediately rotate to within 12 ~ 
of R. O'Leary and Geil [6] studied the tensile 
deformation of POM at 125 ~ C, where spherulites 
were observed to deform into ellipsoidal shapes 
for up to 125% elongation. In zones of the 
spherulites where the twisted radial fibrils are 
roughly perpendicular to the tensile stress axis, 
these were observed to twist into tighter spirals 
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until they fractured into segments, whereas fibrils 
within 30 ~ of the tensile axis were undamaged. 
The roles of tie molecules in holding stacks of 
lamellar single crystals together in fibrils, and 
intercrystalline links between fibrils in holding 
different regions of a spherulite together were 
discussed. Starkweather e t  al. [3] suggested that, 
in spherulite fibrils parallel to R, [0 0 0 1] axes 
rotate to be parallel to T. However, this is hardly 
a detailed deformation mechanism, and no 
suggestions were made as to how other regions of 
the spherulites could attain the {1 21 0} (1 0]-0) 
texture. Chang e t  al. [5] concluded that at 126 ~ C 
the single slip system {1 0 ]- 0} [0 0 0 1 ] operates, 
i.e. slip occurs on {1 0]-0} planes in the [000  1] 
direction. The explanation for the crystal rotations 
is presumably that of Calnan and Clews [71 al- 
though with just a single type of slip system 
operating it is not clear how displacement con- 
tinuity between crystals is preserved. 

There is an extensive literature on texture 
development in rolled metals, but as yet no com- 
prehensive theory. To overcome the problem of 
the unknown interactions between crystals in a 
deforming polycrystalline material, it is usual to 
simplify the situation by assuming either a 
uniform state of stress, or of strain, throughout 
the material. The assumption implies discon- 
tinuous strains or stresses respectively at the 
crystal boundaries. Von Mises [8] established that 
there must be five independent slip systems in a 
crystal for an arbitary change of shape to be 
possible. Further, for a single crystal slipping on 
a single system, the rotations of the crystal lattice 
are established for two experimental situations: 
(1) in a tensile test on a long thin crystal the con- 
straint that the grips remain on the tensile axis 
causes the slip direction to rotate towards that 
tensile axis, (2) in a uniaxial compression test, the 
constraint that the platen surfaces remain normal 
to the axis of compression causes the slip plane 
normal to rotate towards that axis [9]. 

In Calnan and Clews' [7] treatment of rolling 
textures, uniform stress conditions were assumed 
only to apply to crystals near the sheet surface. 
They assumed that the crystals would rotate in the 
same manner as constrained single crystals, and by 
comparing the predicted stable textures for 
uniaxial tension along the rolling direction, and for 
uniaxial compression along the sheet normal 
direction deduced that those textural components 
occuring in both would be stable in rolling. 

Dillamore and Roberts [10] assumed a uniform 
state of stress throughout the sheet, and calculated 
the resolved shear stresses on the slip systems in 
b c c and f c c metals for the simultaneous appli- 
cation of a tensile stress along R and an equal com- 
pressive stress along N. They assumed that slip on 
the system with the highest resolved shear stress 
would cause the slip direction to rotate towards R 
and simultaneously the slip plane normal towards 
N. Such theories can only be checked by com- 
paring the predicted stable textures with those of 
metals rolled to say 1% of the original thickness. 
To allow comparisons at moderate reductions, 
Leffers [11] developed a computer program based 
on Dillamore and Robberts' approach. In it each 
f c c  crystal shears by increments of 0.05 shear 
strain on the {1 1 1 } (1 1 0) slip system with the 
highest resolved shear stress. He was able to 
predict typical pole figures for rolled brass. The 
opposite approach of assuming uniform strain 
throughout the polycrystalline aggregate has been 
used by Kallend and Davies [12] for f c c  metals. 
They used the Bishop and Hill [13] principle of 
maximum work to determine which of the many 
possible sets of slip systems were operative, and 
made further assumptions to allocate the total 
shear among the slip systems. Their results suggest 
that {111} (110)  slip systems lead to a pure 
copper roiling texture, whereas to obtain a 
typical brass rolling texture, deformation twinning 
is also required. Thus there are two quite different 
computer models, one based on uniform stress and 
the other on uniform strain, that can be used to 
explain the roiling textures of f c c metals. 

Hammer et  al. [14] found POM to be a 
material with approximately 75% crystallinity by 
weight, and a complex spherulitic microstructure, 
so most models for the deformation of POM are 
gross simplifications. One extreme is to treat the 
deformation as occuring entirely in the amorphous 
matrix so that the crystals rotate but are not 
plastically strained. Wilchinsky [15] has proposed 
two such models and he has calculated the average 
c axis orientation for a plane strain deformation. 
This model has been to some extent confirmed by 
Hay and Keller's [16] observations on two dimen- 
sional ringed polyethylene spherulites and given 
support by Wang's [17] analysis of the elastic 
anisotropy of polyethylene spherulites. The other 
extreme is to treat POM as a polycrystalline 
material; so that all the plastic deformation occurs 
in the crystals. We have investigated the value of 
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both the polycrystaUine approximation and 
Wilchinsky's model in the prediction of the rolling 
texture of POM. 

2. Observed crystal deformation 
mechanisms 

Bassett [18] has examined single crystals of POM 
in the electron microscope. The polymer forms 
hexagonal plate like crystals with (0 0 0 1) surfaces 
and {1 0 ]- 0} growth planes. By observing Moird 
fringes between bilayer crystals having a slight 
relative rotations, dislocations were identified 
having a horizontal component of Burgers vector 
of a/3 (1 1 20)  which is the shortest lattice trans- 
lation. Such dislocations can only move easily 
without breaking covalent bonds by moving in the 
closest packed {1 0 ]'0} fold planes. This suggests 
{1 0]-0} <1 1 20)  as a possible slip system. Garber 
and Geil [19] observed the deformation of POM 
single crystals on a "Mylar" fdm and found that at 
90% tensile strain slip occurs on {1 0 ]-0} planes in 
< 1 21 0) directions, with straight slip lines crossing 
the boundaries of sectors having different fold 
plane directions. Bassett [18] was unable to deter- 
mine the c component of any Burgers vector, so 
there is no direct evidence for the {10]-0} 
[0 0 0 1] slip system. 

Young et al. [20] have analysed the slip system 
in certain plane strain deformations of highly 
oriented high-density polyethylene. They con- 
cluded that chain slip would cause the [00 1] 
direction to rotate towards R and the lameUar 
surface normals to rotate towards N. In POM 
{1 0] '0} [0001 ]  is the equivalent of chain slip, 
so applying this analysis to Gezovich and Geil's 
[1] wide-angle and small-angle X ray data leads to 
the conclusion that chain slip occurs in the rolling 
of POM. Young et al. also found that elastically 
recoverable shear strains of about 0.3 could occur 
in the amorphous interlamellar material. 

To find out whether there are five independent 
slip systems in POM the tensor strain (eii= 
�89 i + ~ujSxi),  where u is the displacement 
and x the position co-ordinate, was calculated for 

each of the slip systems so far mentioned. The 1,2 
and 3 axes were taken along [1 01-0], [1 270]  
and [0 0 0 1 ] respectively. Table I shows that there 
are four independent slip systems (only four sets 
of ei~ cannot be formed by combinations of other 
sets), and in particular there is no tensile or 
compressive strain in the [0 0 01 ] direction. In 
hexagonal metals there is usually at least one 
twinning deformation that compresses [000  1] 
and one that extends it, but there is no experi- 
mental evidence for deformation twinning in POM. 
However, interlamellar shear could provide an ca3 
component so long as the lamellar normal is not 
along the [0 0 0 1 ] direction. If the surfaces of the 
lamellar crystals are initially (0 0 01)  planes, this 
implies that inteflamellar shear can provide the 
fifth independent slip system so long as some 
{1 01- 0} [0 0 0 1 ] slip has already taken place. 

Since any slip system would presumably 
operate by dislocation movement, it is necessary 
to consider the strain field energy of such dis- 
locations, especially in the case of {10]-0} 
[0001]  slip where the Burgers vector could be 
17.3A. Schultz [21] has discussed the results of 
Eshelby and Stroh [22] who showed that the 
strain field energy of a screw dislocation passing 
through a thin plate-like crystal was far less than 
that of a similar dislocation in a massive crystal. 
Allowing also for the low shear modulus of 
polymer crystals, Schultz showed that the strain 
field energy of a screw dislocation of b = 2.5 A 
passing through a polyethylene crystal of thickness 
100 A would only be ,v 1 eV, a value low enough 
to conceive of thermal generation of such dis- 
locations at room temperature. It is possible that a 
dislocation of Burgers vector 17.3,8, would split 
into partial dislocations, to reduce its strain 
energy. 

Finally, there is the possibility of inhomo- 
geneous deformation or micronecking. Hammer et 
al. [14] observed micronecking in the extension of 
large two-dimensional POM spherulites and Garber 
and Geil [17] observed fibrillation in cracks in 
deformed single crystals. In contrast with the 

TABLE I Crystal strain components for units hear strains on POM slip systems 

Slip system etl e~ e3a e~2 e23 eat 

1 (1 o io)  [0001] 0 0 0 0 0 0.5 
2 (01i0)  [0001] 0 0 0 0 0.25x/3 0.25 
3 ( i100)  [0001] 0 0 0 0 0.25x/3 -0.25 
4 (10iO) [i-2 101 0 0 0 0.5 0 0 
5 (0 1 ]'0) [2 1 1 O] 0.25x/3 0.25x/3 0 --0.25 0 0 
6 ( i lO0)  [1i201 0.2543 --0.2543 0 --0.25 0 0 
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plane stress conditions in these studies, such 
micronecking in bulk POM would involve 
simultaneous cavitation (in the same way as craze 
formation does in glassy polymers) and hence 
would be less likely to occur. 

3. Uniform stress crystal slip model of 
uniaxial rolling texture development 

A uniform stress model was chosen since there is 
evidence that the plastic strain in deformed 
spherulites is inhomogeneous, and because the 
computat ion is easier. The difficulty with 
attempting a uniform strain model is that the 
necessary interlamellar shear occurs on a plane 
that is ill-defined in terms of the crystal axes, so 
that the calculation of crystal rotations would 
depend on many further assumptions. The 
amorphous material is assigned an important role 
in the uniform stress model, for as well as pro- 
viding a means of c-axis extension in the "crystal" 
composed of  a stack of lamellae with amorphous 
interlayers, it must accommodate strain dis- 
continuities at "crystal" boundaries, and transmit 
the uniform stress to the crystals. 

3.1. Resolved shear stress for a crystal of 
arbitary orientation 

Rowe [23] has analysed the stress conditions in 
the rolling process treating it as a plane strain de- 
formation process in the R N  plane. The R, T and 
N axes are principal stress axes, if  the frictional 
forces on the sheet surface are low. The defor- 
mation is assumed to be homogeneous, so, if the 
material obeys the Von Mises yield criterion, the 
relevant L e v y - V o n  Mises equation 

d~ = ~[~'T--�89 +aN)] 
predicts that the principal stress in the T direction 
o T = �89 R + ~rN) since the plastic strain increment 
in the T direction de,/, = O. The stress tensor in the 

R 

R',, N ,  R 

RTN axes can, therefore, be split into a dilational 
part, which increases in magnitude towards the 
centre of  the roll nip as a result of  the "friction 
hill", and a deviatoric part which may be written 

a =  0 0 

0 -K /  

where K is a constant stress = {(o R --ON). Since 
the plastic deformation processes are assumed to 
occur at a critical resolved shear stress, only the 
deviatoric stress tensor is of  interest. For this 
purpose, therefore, the stress system in rolling 
may be treated as being equivalent to a tensile 
stress K along R, and a compressive stress - - K  
along N. 

We have observed that isotropic POM appears 
to obey the Von Mises yield criterion modified to 
include a small dependence on the dilational stress 
component.  After being rolled the polymer even- 
tually becomes anisotropic in its yielding be- 
haviour, and the yield stress for a particular type 
of plastic strain depends on the sign of the plastic 
strain increment. Thus the stress analysis may only 
be expected to apply for the initial stages of  
rolling reduction. 

It is assumed that the deviatoric stress tensor 
acts equally on all the crystals in the polymer. In 
order to calculate the resolved shear stresses on the 
various slip systems the stress tensor must be trans- 
formed into individual crystal axes from the RTN 
axes. The R T N  axes may be rotated into the 
crystallographic 123 axes (1 = 1 0 ]-0, 2 = 1 2 1 0, 
3 = 0 0 0  1) as follows (see Fig. 1): 

(1) rotate R T N  about ON by ~ anticlockwise to 
R'T'N; 

(2) rotate R'T 'N  about OR' by/3 anticlockwise 
to R'T"3; 

(3) rotateR'T"3 about 03 by 3' anticlockwise to 

3 2 

N T" R 
�9 T" 3 ,8 

Figure 1 Euler angle rotations, carried out in sequence to transform RTN axes to 123 axes. 

'1 

2095 



123. 
The position of  each crystal is thus defined by the 
Euler angles a,/3, 7. In the 123 axes the deviatoric 
stress sensor becomes 

o" = R a R  g 

where R is the rotation matrix: 

cos a cos 7 -- sin a cos/3 sin 7 

~ - - cos  ~ sin 3' --  sin a cos/3 cos 7 

\ sin a sin/3 

and R r its transpose. The resolved shear stress 
for the slip system (10 i "0 )  [ 0 0 0 1 ]  (system 1 of 
Table I) is 

' �89 /3 (Y13 = sin 2a sin cos 7 

- -  �89 2 a + 1) sin 213 sin 7. 

For slip systems 2 and 3, 3' + rr/3 and 3' + 2rr/3 
can be substituted for 3' in the above equation. For 
the slip system (1 0] -0)  [1 2 10] (system 4 of 
Table I) the resolved shear stress is 

o'12 = �89 2 a cos 2/3 -- cos 2 a -- sin z/3) sin 23' 

-- �88 sin 2a cos/3 cos 23'. 

By replacing 7 by 7 + 7r/3 and 7 + 2rr/3 in the 
above equation, the resolved shear stresses for slip 
systems 5 and 6, respectively, may be calculated. 

3.2. Active slip systems 
There is no evidence for polymer systems to 
suggest whether crystals largely slip on a single 
system, or whether many slip systems are simul- 
taneously activated. Nor, at least for POM, have 
plasticity measurements been made on single 
crystals (or singly textured material) to determine 
the critical resolved shear stresses for the slip 
systems. In polyethylene at least Young et al. [20] 
have provided evidence that the Schmid law of  a 
critical resolved shear stress for [0 0 1 ] slip applies. 
Thus for POM we assume that each crystal slips 
solely on the system for which the critical resolved 
shear stress is first exceeded. Symmetry  dictates 
that slip systems 1, 2, or 3 (chain sl ip)have the 
same critical resolved shear stress, as do systems 4, 
5 or 6 (prismatic slip). At present, however, we 
must weight the resolved shear stress for chain slip 
by an arbitarily chosen constant (A) in deter- 
mining the active system. 

Another problem is to determine the amount  of  
shear (S) on the active slip system. The largest re- 
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solved shear stress will vary with the orientation of  
the crystal, and relationship between the plastic 
shear strain and the resolved shear stress is 
unknown. We have assumed, as Leffers [11] did, 
that the increment of  S is the same for all crystal 
orientations. The value chosen, 0.1, is a com- 
promise between determining precisely the point 

sin a cos 7 + cos acost3sin 7 sin/3 sin 7 ~  
/ 

-- sin a sin 7 + cos a cos/3 cos 7 sin/3 cos 3 ' ]  
! 

-- cos a sin/3 cos/3 / 

at which the active slip system changes, and the 
computat ion time. 

3 . 3 .  C r y s t a l  r o t a t i o n s  o n  s l i p  

In the absence of  any other simple constraints, we 
have assumed, as did Leffers, that the crystals are 
constrained as follows. 

(a) A material line lying along the R direction 
before slip must retain this orientation after slip. 

(b) A plane of material with its pole in the N 
direction before slip must retain this orientation 
after slip. 
These constraints are those appropriate to a single 
crystal in a uniaxial tension or compression test. 
It is difficult to express physically the shape con- 
straints of  neighbouring crystals in a polycrystal 
that would give rise to them. Once these con- 
straints are established, then the rotations of  the 
crystal axes relative to R T N  is found by the 
methods of  Kelly and Groves [9].  These give, for 
a crystal with its crystallographic axes fixed in 
space, the new position of  any imbedded material 
line or plane after single slip by a shear strain S. 
The new set of  Euler angles representing the 
crystal orientation after shear may be obtained 
from the rotated positions R '  of  the roiling 
direction and N'  of the compression direction in 
the crystallographic axes. 

3.4. Computation of the pole figures 
A program was written in FORTRAN IV which 
consisted of the following stages. 

(1) 99 sets of  Euler angles were read in to repre- 
sent the initial crystal orientations. Wunderlich 
[24] describes the polyoxymethylene crystal as 
belonging to the trigonal crystal system and having 
a P31 space group. As the lattice is hexagonal we 
have ignored the details of  the intermolecular 
forces in the crystal and assumed that both the 
crystal and its slip systems have hexagonal 



symmetry. Accordingly the Euler angles were 
restricted to the following ranges 
I1/2 > c~ > -- II/2 since in the pole figure recovery 
the distance of any pole from both the positive 
and negative R axis is used. 
11/2 >/3 > 0 since the crystal has mirror symmetry 
about (0001) .  
II/3 > 7 > 0 since the crystal 0 0 0 1  axis is a six- 
fold symmetry axis. 
Eleven pairs Of [3 and 7 were chosen to give 
positions of N roughly equally spaced at 0.35 
radian intervals in the twelfth part of the spherical 
surface between the (0001) ,  (10]-0)  and 
(]- 100)  planes, and for each pair nine values of a 
at 0.35 radian intervals were used. It was checked 
that if the pole figure recovery process (step 9) 
was used on the initial sets of Euler angles, the 
polefigures had an approximately uniform pole 
density. 

(2) For successive runs the constant A was 
given the value 0.5, 1, 1.5, and 2. For each crystal 
the slip system with the largest numerical value of 
A times the resolved shear stress for chain slip, or 
resolved shear stress for prism slip, was deter- 
mined. The shear strain increment S on this system 
was assigned the value of 0.1 times the sign of the 
resolved shear stress. 

(3) The angles XR and XN between the slip 
direction and the R and N axes respectively, and 
4~R and 4~r between the pole of the slip plane and 
R or N were calculated from the Euler angles using 
relationships specific to each slip system. Appen- 
dix 1 gives details. 

(4) The relationships derived by Kelly and 
Groves [9] were used to find the new values of X 
and r after slip, L the extension ratio of a material 
line initially along R, and r the ratio of the final 
to initial separation of any two material planes 
that stay parallel to the R T  plane. 

L 2 = 1 +2Scosq~ncosXn + S  2cos 2r 

1/r 2 = 1 - - 2 S c o s ~ v c o s X N + S  2cos 2XN 

sin XR/sin X~ = cos CR/cos qS~ = L 

cosX~v/cosX N = sinq~r/sin4N = r. 

Note that we have assumed S to be positive in the 
first two equations. 

(5) Relationships specific to each slip system 
were used to recover the new values of a,  [3 and 7 
that specify the crystal orientation after shear. 
Appendix 1 gives details. 

(6) After n increments of shear strain in all the 
crystals the products rlr2r3 . . .  rn and L I L 2 L 3  . . .  

L, were computed for each crystal r n and L, being 
respectively the value of r and L for the nth strain 
increment. The average values 

g = rlr2 . . . r n  

and 
[ ,  = L 1 L 2 . . . L ,  

were calculated. Assuming that there was no 
volume change on deformation the average width 

of the sheet was calculated using 

ff, F s  = 1. 

(7) If g was approximately 0.7, 0.5 or 0.3 then 
step 8 was carried out. If not, a further increment 
of shear strain was imposed on all the crystals by 
returning to step 2. 

(8) The crystal positions relative to the R T N  

axes were recovered and displayed as pole figures 
for comparison with experimental data. Each 
crystal contributes one ( 0 0 0 1 )  pole, or three 
{10]-0} poles, or six {10]-5} poles to the stereo- 
graphic projection of the respective pole figure. 
Pole figures centred on N were produced. Since 
these must have mirror symmetry about the N T  

and N R  planes only one quadrant was displayed. 
The angular distances of all the poles of a par- 
ticular type from N were calculated, and those 
more than 11/2 away rejected. For the remaining 
poles the angular distances from both the positive 
and negative R axis were calculated and the value 
less than 1I/2 used. Finally, the co-ordinates of the 
poles in the fourth quadrant of the pole figure 
were calculated from the angular distances from N 
and R (Appendix 2 gives details). Computer graph 
plots of the pole figures were obtained using" the 
University's I.C.L. 1960A computer. 

3.5.. Results of computation 
The computed pole figures are compared with 
experimental results in a later section. The main 
features of the computed pole figures are de- 
scribed here, and the main crystal deformation 
mechanisms outlined. It was found that the best 
correspondence between theoretical and experi- 
mental pole figures occurred when the constant 
A -- 1.5, i.e. the critical resolved shear stress for 
slip on {1010} planes in the [0001]  direction 
is only 2/3 of that for slip on the same planes in 
( 1 7 1 0 )  directions. The following description 
applies for A = 1.5. 
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Figure 2 Stereographic projections of  0 0 0 1 pole figures for uniaxially rolled POM (a), (b) and (c) are from the crystal 
slip theory after total shears of  1.0, 2.0, and 3.8 per crystal; (d), (e) and (f) are contours of  pole intensity for the 
Wilchinsky model. Contour level 1 is ~- the undeformed random level, 2 is random, 3 is twice random, etc. (a) and (d) 
are forr  = 0.7, (b) and (e) are forr  = 0.5, (c) and(f )  are forr = 0.3. 
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Fig. 2 shows that the 22% of the crystals, that 
initially had their 0 0 01 axis within ~ 40 ~ of T, 
rotate their 0 0 0 1 axis towards T, and Fig. 8b 
shows that even at a reduction of 7 =  0.7 the 
corresponding 1 01-0 poles have begun to peak 
in the R T  plane and at 30 ~ from N. Examination 
of the sequence of active slip systems shows that 
these crystals all undergo prism (or {10T0} 
( 1 2 1 0 ) )  slip, and after a maximum of twelve 
strain increments (F = 0.66) this changes to duplex 
prism slip on pairs of systems such as 

- - 5 a n d 6  i.e. (011-0) [21T0]  and 

(r100) [rr2o] 
o r  

- 4 a n d 5  i.e. ( 10 ] ' 0 )  [1210]  abd 

( 0 1 i - 0 ) [ 2 1 1 0 ] .  

Such duplex slip then continues and eventually the 
stable {1-2 TO} ( 1 0 1 0 )  texture is reached. Fig. 3 
shows the operation of these forms of duplex slip 
in the stable position. 

tN 

1010 

Figure 3 A typical position of a crystal's axes relative to 
the sheet axes after duplex prism slip. 

Fig. 2 shows that the remaining 78% of the 
crystals rotate their 0 00  1 axes towards R, and 
that the rate of rotation slows down as they 
approach R. They undergo chain (or {1 0]-0} 
[0 0 0 1 ] ) slip on a single slip system. There is little 
tendency for the slip plane normals to cluster at N 
in the 1 0 ] '0 pole figure, until F ~  0.2. However, 
there is a boundary between chain and prism slip 
that occurs when the 0 0 0 1 axis is on an arc that 
extends roughly from 10 ~ from R in the RN plane 
to 20 ~ from R in the R T  plane. The exact 
boundary also depends on the orientation of the 
1 0]-0 poles, so it cannot be drawn as a curve in 
the 0 0 0 1 pole figure. When a 0 0 0 1 pole reaches 
this boundary, the crystal then either undergoes 
prism slip, or a complex mixture of prism and 
chain slip. The eventual stable orientation is only 

reached when g <  0.2, which is beyond the experi- 
mental reduction limit. The stable orientation is of 
a {1 21 0} plane in the sheet plane, and the 0 0 0 1 
pole in the R T  plane but at 20 ~ from R. 

3.6. Macroscopic stresses and strains in the 
rolling process 

The change in the overall sheet dimensions as 
rolling proceeds are predicted in Fig. 4. It is 
encouraging to see that the sheet width is pre- 
dicted to stay reasonably constant. Thus the defor- 
mation process postulated is not inconsistent with 
the plane strain nature of the rolling process. 

1.2 

r 

~k. 0.8 
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0.4 

V.- 

0.0 

- 0.2 

~L 

10 20 30 40 

Number of steps of 0.1 shear 

Figure 4 Macroscopic principal true strains predicted by 
the crystal slip model as a function of the total shear 
strain per crystal. The suffices L, r and w refer to the 
length in the rolling direction, the reduction in thickness, 
and the width, respectively. 

In order to find the approximate degree of 
orientation hardening in the polymer as the crystal 
texture changes, after each shear strain increment 
the average value for all crystals of the reciprocal 
of the magnitude of the resolved shear stress on 
the active system was calculated. Whether this is 
the correct average to take is debatable, but it 
seems consistent with the assumption that each 
crystal undergoes the same shear increment. Since 
in this calculation the resolved shear stresses have 
been weighted by the factor A, the result, shown 
in Fig. 5, may be interpreted as the ratio of 
effective stress magnitude K in roiling to the 
critical resolved shear stress for prism slip. Since, 
however, this latter quantity is unknown at 
present, only the rate of increase in K with rolling 
reduction can be compared with experimental 
data. Fig. 5 shows that the experimental orien- 
tation hardening is greater than that predicted by 
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Figure 5 Macroscopic true stresses predicted by the crystal slip model as a function of the true strain (--er). The solid 
line is the predicted yield stress, K, of the slip model divided by the initial value. The dashed line is experimental data 
for the plane strain compression of POM at 20 ~ C and strain rate 0.01 min-' ,  again normalized with respect to the 
initial compressive yield stress. 

the crystal slip model. This is not surprising since 
other mechanisms such as dislocation-dislocation 
interactions or orientation hardening in the amor- 
phous phase could also contribute to the effect. 

3.7. Uniform stress crystal slip model for 
biaxial rolling 

By making minor modifications in the uniaxial 
rolling computer program, it was possible to 
simulate the effect of alternate small rolling 
reductions of a sheet in two perpendicular 
directions, R~ and R2. 

If the shear increment number was odd, then 
after step 5 of Section 3.4 the new value of c~ was 
increased by rr/2. For odd shear increments the 
Euler angles define the sheet axes R,R2N with 
respect to the crystal. For even shear increments 
the position of N, defined by /3 and "1,, is un- 
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changed, but R1 replaces R2 and R2 replaces --R1. 
/~ is redefined as 

[ = L1 L3 . . .  L2n-1 
r2L2 r4L4 r2nL2n 

and the pole figures are only recovered after an 
even number of shear increments. 

Examination of the computed 0 0 0 1  pole 
figures in Fig. 6 show that 28 of the poles move 
towards each of R, and R2 and the remaining 43 
move towards a position midway between R 1 and 
R2 and 80 ~ from N. The latter are always under- 
going chain slip (for instance alternatively on 
systems --1 and --3),  but this position to which 
the 0 0 0 1 axis moves is not a stable end position 
- eventually for g <  0.2 the number of poles at 
this position declines. The former 0 0 0  1 poles 
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Figure 6 0 0 0 1 pole figures for equally biaxially roiled POM predicted by the crystal slip model, a and b are after total 
shears of 2.0 and 5.4, for which r = 0.504 and 0.207 respectively. 

eventually reach the R1R2 plane and are within 
about -+ 20 ~ of R] or R2. In this stable state they 
undergo duplex slip on prism slip s y s t e m s - 4  
and 5 or - -5  and 6 exactly as was found in the 
uniaxial rolling model. The important  feature of  
the biaxial rolling model is, therefore, that the 
majority of  the crystals end up on a position 
where duplex prism slip operates with a {1 2 1 0} 
plane in the plane of the sheet, and the [0 0 0 1 ] 
axis within 20 ~ of either R1 or R2, whereas the 
minority go through an intermediate texture 
described by (a = 45 ~ 13 = 80 ~ 3' random). The 
sharpness of  this latter texture will depend on the 
rolling reductions in the R1 and R2 directions 
being exactly equal, a condition that is unlikely to 
be met  in practice. 

4. Wilchinsky's model applied to uniaxial 
rolling textures 

The simpler of  Wilchinsky's [15] two models is 
one in which a viscous matrix causes imbedded 
rigid crystals to rotate without deforming when 
the matrix is deformed. Some interaction between 
the crystals, such as the interlamellar tie 
molecules, causes the crystal c-axis orientation to 
change. More specifically a crystal c-axis changes 
its orientation by exactly the same amount  as 
would a parallel embedded material line in a 
homogeneously deformed solid. This presumably 
implies that the extensible tie-molecules (or other 
means of interaction) are the main stress bearing 
component  of  the microstructure. However im- 
plausible the mechanism may be, what is really 
being tested is the assumed constraint on the 

crystals in deformation. 
The orientation of the c-axis of  a crystal in the 

undeformed material can be described by the R,  T 
and N direction components of  unit vector along 
c. In the rolled material these components are 
multiplied by 1/r, 1 and r respectively, where r is 
the reduction in sheet thickness. Wilchinsky only 
calculated the average value of cos 2 (the angle 
between the c-axis and R)  for an initially uniform 
distribution of c-axes. However, using the com- 
puter program of Section 3.4, it is a simple modifi- 
cation to calculate any pole figure of  a set of  
crystals rotating according to Wilchinsky's 
assumed constraints. In a 0 0 0 1 pole figure such 
as Fig. 2 the position of a pole is defined by the 
Euler angles a and 13. In terms of the initial Euler 
angles, the RTN components  of a vector repre- 
senting the c-axis orientation are [( l / r)  sin a sin 13, 
cos a sin 13, r cos 13] after rolling. Thus the new 
Euler angles a'13'7' are 

a '  = tan -i  (tana/r) 

/3' = tan -1 (tan/Tx/(sin ~ a + r 2 cos z a)/r ~) 

3'' = 3 ' .  

This reorientation was applied for the cases 
r = 0.5 and 0.3 to the set of  99 crystals described 
in Section 2.2.4, and the 0 0 0 1, 1 0 ]- 0 and 1 0 ]- 5 
pole figures calculated. Contour levels of  pole 
intensity were also computed from the continuous 
0 0 0 1 pole intensity function. If  this function is 
unity in the undeformed material, then the 
intensity I (a ' ,  ~') in the deformed material may be 
found from the conservation of the number of  
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poles in a small solid angle sin/3 da d/3 which 
becomes sin/3'da'd/~' on deformation, i.e. I = sin 
/3 cla d/3/sin/3' da '  d/~'. Use O f t h e  expressions for 
the transformation of  Euler angles leads to the 
result 

r 3 [4w -- sin 2a '  sin 2/3' (1 -- r2)] 
I =  

4w [1 -- sin 2/3' (1 -- r2w)] a/s 

where w = r 2 sin s a '  + cos s a ' .  Recourse was then 
made to a computer  contour program that drew 
contour levels in the 0 0 0 1 pole figure from the 
values of  I calculated on a square 45 x 45 array 
of points. The intensity contours may be com- 
pared with the discrete pole distribution, giving a 
useful cross check on the calculations. The 0 0 0 1 
pole intensity varies smoothly,  with a single 
maximum of  1/r 3 at R,  unit intensity at T, and a 
minimum of  r a at N (Fig. 2). 

Since the third Euler angle 3' is supposed to 
remain randomly distributed in the Wilchinsky 
model, the 1 0 ]- 0 pole figure intensity may be cal- 
culated as the average 0 0 0 1 intensity at points 
on a great circle at 11/2 from the point concerned. 
The 0 0 0 1 pole figure has mirror planes perpen- 
dicular to R and T, so the 1 0 i70 intensity was 
calculated from the 0 0 0  1 intensity at 20 points 
equally spaced around one half of  the great circle. 
The results in Figs. 8c. 9c and 10c show a broad 
intensity band from N to T with the maximum 
intensity at N. This maximum is weaker than that 
in the corresponding 0 0 0 1 pole figure. 

The 1 0 i-5 pole figure intensity may be cal- 
culated in a similar way as the average 0 0 0  1 
intensity around a small circle of  radius 42 ~ from 
the 1 0 ]- 5 position of  interest. The results in Figs. 
9f  and 10f show that there are fewer contours 
than in the corresponding 1 0 ]-0 pole figures, and 
that it is not until r = 0.3 that any distinct texture 
emerges. 

The Winchlnsky model can also be applied to 
equal biaxial roll!ng, since the overall strains are 
the same as those for uniaxial compression. If  the 
reductions in sheet thickness is r, then only the 
second Euler angle /3 is changed by the defor- 
mation process. The value /3' in the deformed 
material is given by 

rx/r tan/3 '  = tan/3. 

Consequently, the 0 0 0  1 pole figure has axial 
symmetry about N, the intensity being given by 
I = It/cos/3'x/(1 + r 3 tan s /3')] 3. Fig. 7 shows 
that the 0 0 0 1 intensity increases from r 3 at N to 
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Figure 7 Pole intensity as a function of the angular 
distance f r o m N  for the 0 0 0 1 , 1 0 1 0  and 1 0 T 5  pole 
figures for equally biaxially roiled POM predicted by the 
Wilchinsky model for r = 0.5. 

1/r~/r at 90 ~ from N. The 1 0 ] -0  and 1 0]-5 pole 
figures also have axial symmetry about N, and are 
obtained by averaging the 0 0 0 1 intensity around 
a circle of  radius 90 ~ and 42 ~ respectively centred 
on the value of/3' of  interest. 

5. Sample preparation 
A high molecular weight I.C.I. "Kematal" poly- 
oxymethylene copolymer (Melt Flow Index 2.5 at 
190~ was used. Granules were compression 
moulded at 200 ~ C into 1 5 0 m m  x 150ram sheets 
which were rapidly cooled. These were uniaxially 
rolled at 200C at a rate of  2 5 m m s e c  -1 with a 
reduction of about 0.03 mm per pass to a final 
thickness of  0.8 mm,  the direction of rolling being 
reversed at each pass. By using various initial sheet 
thicknesses a variety of  thickness reductions were 
achieved. Excessive temperature rises were 
avoided, and the deformation was effectively plane 
strain, with negligible width increase in the trans- 
verse direction. 

5.1. Preparation of X-ray figures 
POM has a 95 helix conformation and packs in a 
hexagonal unit cell. The most intense diffraction is 
obtained from the close-packed {1 0]-0} planes, 
the {1 0]-5} planes giving the second strongest 
diffraction. These two sets of  planes were used for 
the X-ray investigation. 

C h u g  et al. [5] managed to obtain a ( 0 0 0 9 )  
pole figure from a very highly oriented POM 



sample. Even so the pole figure contained 'a 
"ghost" from the neighbouring (1 1 25)  poles'. 
This is not  surprising since Carazzolo [25] states 
that the relative intensity of  the 1 1 2 5 to 0 0 0 9 
reflections is 20 : 1, whereas the respective values 
of  20 for CuKa radiation are 48.3 ~ and 47.1 ~ The 
crystal thickness perpendicular to the 0 0 0 9  
planes is only about 150A; the consequent 
broadening of  the 0 0 0 9 diffraction will prevent it 
from being separated from the 1 1 2 5 diffraction 
peak. 0 0 0 9 pole figures will be at best qualitative, 
if the orientation is strong enough to know which 
peaks to disregard. In the event the intensity 
found at a Bragg angle of  20 = 47 ~ was indis- 
tinguishable from the background level, so no 
0 0 0 9 pole figures were produced�9 

Cubes of  1 mm side were cut from the rolled 
sheets for mounting in a goniometer. A four-circle 
diffractometer was used in which the scintil- 
lation counter was fixed and the specimen rotated 
on two perpendicular axes. CuKa radiation from 
a Phillips PW310 X-ray generator was used. 
Measurements were made automatically over 5 ~ 
intervals with a count time of  5 sec, and recorded 
on punched tape. A chart record of  integrated 
intensity was also made. The background count 
rate was taken as the average of  the count rates at 
two degrees either side of  the Bragg angle. 

The following computations were then made by 
computer: the background was subtracted from 
each count, and the counts were then averaged to 
give the value, Iav, which would have been the 
diffracted intensity for an isotropic specimen�9 
Contours of  the diffracted intensity at levels of  
1~,,/2, Iav, 2/av, 4Ia~, etc. were calculated by inter- 
polation between the three nearest points plotted 
on a stereographic projection, and labelled 1, 2, 3, 
4, etc. respectively�9 

5.2. Stresses and dimensions in uniaxial 
rolling 

In order to estimate the stresses in the rolling of 
POM, plane strain compression tests were made 
using apparatus similar to that described by 
Williams and Ford [26].  The strain-rate of  
approximately 10 -~ min -a is about 10 -3 of  that in 
the rolling process, and the increments of  plastic 
strain were somewhat larger, but an approximate 
value of  the stresses in the rolling can be obtained. 
The die breadth used was 6 .2mm,  and sheet of  
6 m m  thickness and 3 0 m m  width was tested�9 
These dimensions ensure that uniform plane strain 
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Figure 8 Comparison of experimental and theoretical 
10 i 0 pole figures for POM uniaxially rolled to r = 0.7. 
(a) experimental; (b) crystal slip; (c) Wilchinsky. Contour 
levels in (a) and (c) are the same as in Fig. 2. (c) shows 
separately the predictions for a discrete set of 99 crystals, 
and the contours of a continuous pole distribution. 
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deformation occurs between the dies. In an 
attempt to achieve larger plastic strains, some POM 
was plane strain compressed in a channel, in a 
device similar to that used by Chin and Nesbitt 
[271. 

The length, width and thickness of a rect- 
angular POM sheet ( 9 0 m m x 9 0 m m x 6 m m )  
were measured at several positions during uniaxial 
rolling. 

6. Experimental results 
6.1. Pole figures for uniaxially rolled POM 
Fig. 8a shows the experimental 1 01- 0 pole figure 
for a uniaxially rolled POM sheet with a thickness 
reproduction r = 0.7. Only one quadrant is shown 
since the pole figure had mirror symmetry about 
the RN and TN planes. Figs. 8b and c show the 
predictions of the crystal slip and Wilchinsky 
model, respectively. They both predict an 
increased intensity band running from N to T, but 
the overall variation in intensity in the Wilchinsky 
prediction is less than the experimental variation. 
The crystal slip model is better in this respect; it 
also predicts intensity peaks at R and 30 ~ from 
N in the NR plane, the former of which is ob- 
served and the latter may be present but swamped 
in the intensity band from N to T. There was 
little variation from uniform intensity in either the 
experimental or theoretical 1 01- 5 pole figures, so 
these are not shown. 

Fig. 9 shows 10 i-0 and 1 01-5 pole figures at a 
thickness reduction r = 0 . 5 .  The experimental 
101- 0 pole figure now has an intensity minimum 
at N, and maxima at R, T, and 30 ~ f romNin  the 
NR plane. Preedy and Wheeler [4] have published 
an almost identical pole figure. Those of Gezovich 
and Geil [1] are fairly similar, but there is a strong 
possibility that their starting material did not have 
a fully spherulitic microstructure. The crystal slip 
model (Fig. 9b) predicts the features of the 
1 0 i- 0 pole figure with the exception of the peak 
at T. The Wilchinsky model (Fig. 9c) is much less 
successful, being wrong in its predictions at R, T 
and N. The experimental 1 0 ]-5 pole figure has 
only the beginnings of a peak 40 ~ from R in the 
RT plane. Gezovich and Geil find a similar feature, 
but also have a small peak at N. Neither of the 
compUted 1 01-5 pole figures show any high 
intensity regions, only a weakening of intensity 
from N to T, and at R. They disagree with the 
experimental figure but not strongly. 

At a thickness reduction of r = 0.3 the experi- 
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mental 1 0 1 0  figure (Fig. 10a) has a strong 
intensity band from N to T, with a subsidiary peak 
30 ~ from N in the RN plane. There is a weak peak" 
at R visible on the diffractometer trace but it fails 
below the 1 level. The 1 0 1 5  pole figure has a 
broad band of increased intensity approximately 
40 ~ from R, with a maximum in the RT plane. If 
the Wilchinsky model distribution (Figs. 2c, 10c 
and f) is rotated by n/2 about N, this almost 
exactly matches the experimental intensity 
contours, apart from the small element of {1 21 0} 
(101-0) texture. This would be a 0 0 0 1  distri- 
bution peaking at R and falling off more rapidly 
away from the RN plane than in it, with Euler 
angle ~' randomly distributed. The Wilchinsky 
model fails to predict the textures correctly. The 
crystal slip model (Fig. 10b and e) is better, but 
the pole distributions are too sharply peaked, and 
the element of {1210} (101-0) texture is too 
strong. 

On the basis of wide-angle X-ray diffraction 
data, we cannot agree with the conclusion of 
Gezovich and Geil that severe structural changes 
occur at a rolling reduction of about 0.4. There 
appears to be a continuous development of the 
textural features, with the exception of the 
reduction in the {1 21 0} (1 0 1 0 )  texture at 
r =  0.3. 

6.2. Pole figures for  biaxial ly rolled POM 
At a thickness of 0.5, the 1 0i-0 pole figure from 
equally biaxially rolled POM (Fig. l 1 a) shows 
peaks at R1, R2 and at 45 ~ from N midway 
between R1 and R2. The 1 0 T 5 pole figure is less 
varied, with slight maxima near N and midway 
between R1 and R2. Gezovich and Ceil have pub- 
lished similar pole figures. The Wilchinsky model 
for each biaxial rolling predicts pole figures that 
are axially symmetric about N, and Fig. 7 shows 
that the 1 0 i-0 pole figure should peak at N, 
failing below the 3-level about 16 ~ from N, and 
that the 1 01-5 pole figure should peak about 55 ~ 
from N. Subsequent rolling reduction would only 
intensify the peaks without changing their 
positions, so that the Wilchinsky model is at 
variance with the biaxiai rolling results. The crystal 
slip model predicts peaks in the 1 0 TO pole figure 
around the R1R2 plane and at about 30 ~ fromN, 
whereas the 1 0 i- 5 figure has a slight increase in 
peripheral pole intensity, and a decrease at N. 

Biaxial rolling is possible to greater reductions 
than uniaxial rolling, and Fig. 12 shows pole 
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Figure 11 Comparison of experimental and theoretical 1 010  and 1 0 15 pole figures for POM equally biaxially rolled 
to r = 0.5. (a) is the experimental 1 0 1 O, (b) the crystal slip 1 0 T O, (c) is the experimental 1 0 15, and (d) the crystal 
slip 1075. 

figures for r = 0.13. The peaks in the 1 0 TO pole 
figure at R1 and R2 are sharper, and the remaining 
peak has moved in to within 40 ~ of N. In the 
1 0 ]- 5 pole figure most of the intensity is towards 
the periphery. The crystal slip model predicts 
three features, {1 21 0} (1 0 1 0 )  textures with 
respect to both R1 and R2, and a component de- 
scribed by the Euler angles a = 45 ~ = 80 ~ and 
3' random. It is this last component which does not 
appear to be present experimentally. In general, 
it can be said that the crystal slip model is far 
superior to the Wilchinsky model in predicting 
biaxial rollingAextures, however, in detail it is not 
perfect. The clustering of the 00  01 poles about 
R1 and R2 must be somewhat different, and it is 
unlikely that many 0 0 0  1 poles can balance pre- 
cariously at a midway position. However, it is not 

feasible to interpret the pole figures in terms of 
the distribution described by Gezovich and Geil, 
i.e. a = 0 and 7r/2,/3 = rr/3, and 3' random. 

6.3. Stresses and d imens ions in uniaxia l  
ro l l ing 

The results of the plane strain compression tests at 
20~ are shown in Fig. 5. The initial yield stress 
was 127MNm -2, and it can be seen that the 
slope of the true stress-strain curve increases with 
increasing strain. Plane strain compression tests in 
a rectangular channel were terminated by the 
specimen fracturing into a number of pieces at a 
compressive ~stress of 307MNm -2 and a true 
thickness strain of -- 1.55. Thus it is unlikely that 
thickness reduction ratios m u c h  less than 0.3 can 

be achieved by uniaxially rolling. A rough estimate 
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Figure 12 As Fig. 11 except r = 0.13 experimental and r = 0.2 crystal slip model. 

of  the critical resolved shear stress for prism slip 
may be obtained by dividing the experimental 
yield stress by 2 to obtain the deviatoric stress in 
the N direction, and by 1.22 (the theoretical 
initial ratio o f  the dteviatoric stress to the resolved 
shear stress). The result is 52 MN m -2 . 

During uniaxial rolling the plastic strain in the 
width direction was 6% at r = 0.5, rising to 11% at 
r = 0.3. Initially, the sheet became less opaque, 
and its density by about 0.2% at a thickness 
reduction of  0.5. By a reduction of  0.3 the 
appearance had become silvery, and the density 
had returned to its initial value. Cracks tended to 
grow in from the sheet edges, with crack plane 
perpendicular to R. It is suspected that the 
silvery appearance, and relative density decrease 
are a result of  internal microvoiding. 

6.4. Evidence for an orthorhombic phase 
Carazzola and Mammi [28] found that POM poly- 
merized with certain catalysts is obtained with an 
orthorhombic cell, and that this form reverts 
to the hexagonal form at 60 ~ Preedy and 
Wheeler [4] have suggested that the pole figures 
such as Fig. 9a represent an orthorhombic ( 0 1 0 )  
[ 0 0 1 ]  texture, giving strong ( 0 2 0 )  pole figure 
maxima at T and a weaker maximum at N. Chang 
et aL [5] commented that the X-ray diffraction 
data of  Preedy and Wheeler are insufficient 
evidence for the orthorhombic phase, since in 
conventional POM sheet the crystallite size is small 
and hence the (101-0)  diffraction from the 
hexagonal unit cell is broad and covers the 
positions of  the (1 10) and ( 0 2 0 )  diffraction 
peaks from any orthorhombic phase. If  the orthor- 
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hombic form were produced by rolling, thermal 
analysis should reveal its presence. Therefore, a 
20 mg sample of the r = 0.5 uniaxially rolled POM 
sheet was examined in a Perkin Elmer Differential 
Scanning Calorimeter Model 2. The specific hea t -  
temperature relation was determined at a heating 
rate of 20 ~ C min -1. There was a smooth increase 
in specific heat from 40 to over 120 ~ C, thus ruling 
out the initial presence of any orthorhombic 
phase. 

7. Discussion 
On the basis of comparison of experimental and 
predicted pole figures for rolled POM, a crystal 
slip deformation mechanism seems to be closer to 
the real situation for POM than the Wilchinsky 
model of rigid crystals rotating. However, in 
order to be able to predict the rolling texture of 
POM, a great many assumptions had to be made. 
In the light of the results, the following 
comments can be made on the assumptions. 

The development of an element of {]-2]-0} 
(1 0]-0) texture in rolling is fairly good evidence 
for the operation of prism slip systems. However, 
confirmation of the slip systems by the obser- 
vation of the deformation of POM in an electron 
microscope would be desirable. Another unknown 
is the extent and the nature (elastic or plastic) of 
the interlamellar shear. Perhaps the reason for the 
occurrence of voiding at rolling reductions r < 0.3 
is that the limit of strain accommodation by inter- 
lamellar shear has been reached. 

The problem of predicting the yield surface of 
POM from the texture, the yield behaviour of a 
single crystal, and the degree of crystallinity has 
hardly been touched on, yet it is needed for an 
analysis of the rolling process. All that can be con- 
cluded at this stage is that crystal reorientation is 
responsible for some but not all of the increase in 
the yield stress as rolling continues. Further 
analysis is needed of the onset of yielding in a uni- 
formly stressed polycrystal, and of the variation in 
the plastic strain from crystal to crystal. It would 
seem likely that crystals can slip simultaneously on 
two or more slip systems. However, experimental 
evidence of such behaviour is required before 
adding to the complexity of the crystal slip model. 

The examination of both the crystal slip model 
and the Wilchinsky model has shown that one 
crucial assumption is that of the constraints on 
a crystal in a deforming material. Wilchinsky pre- 

sented his model as one in which the crystals are 
undeformed, but there is nothing in the model 
that prevents crystal slip from occurring. Similarly 
the assumption of uniform stress in the poly- 
crystalline model is no guide to the selection of 
the constraints on the crystals. Thus what is 
required is a description of the constraints on a 
crystal that tallies with the observed development 
of textures. The constraints used in the crystal 
slip model are too precise, in that some variation 
in the amount of rotation is expected. The con- 
straints in the Wilchinsky model are perhaps too 
imprecise, but it is the implications of a single 
reorientation mechanism that is the major draw- 
back of the model. This becomes particularly 
obvious in the case of equal biaxial rolling, where 
the model predicts the same texture as for uni- 
axial compression. In a future paper we show 
that there is a great difference between the two 
experimental textures. 

It would be an advantage at a future date to 
make use of low-angle X-ray data in a crystal 
slip model that incorporated the lamellar shape 
of the crystals. Also, since X-ray data can only 
present an average picture of the microstructure, 
the electron microscope could be used to attribute 
different deformation mechanisms to different 
regions of the spherulitic microstructure. At this 
stage it can only be concluded that a variety of 
crystal slip mechanisms play an important part 
in the development of texture in deformed POM. 

8. Conclusions 
(1) Pole figures have been calculated from 
Wilchinsky's model of crystal reorientation in 
rolling. Even accepting the weakly justified 
assumption that it is the 0 0 0 1 axes that reorient 
on deformation, it was not possible to obtain a 
good correspondence with observed pole figures. 

(2) An analysis of the deformation of POM 
using the two most likely slip systems in the 
crystalline phase leads to a reasonable prediction 
of uniaxial and biaxial pole figures. It is, therefore, 
worthwhile to refine this model to include work 
hardening and other effects. 

(3) The observation of a near perfect {1 0 i-0} 
[0001]  texture in POM rolled at 126~ [5] 
cannot be explained by either of the above 
models. This suggests that other processes such as 
lameUar breakdown, or recrystallization come into 
play at elevated temperature. 
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Figure 13 Perspective drawing of the upper surface of a 
unit sphere, showing the relationship of the R TN of the 
crystal 123 axes in terms of the Euler angles. The angles X 
and ~ for the slip system (1010) [0001] ,  are also 
shown. 

Appendix 1. Relation of the angles �9 and ). 
used in determining crystal rotations to the 
Euler angles 
Fig. 13 shows the positions o f  N and R on the 
surface of  a sphere in terms of  the Euler angles. 
For the (1 0 TO) [0 0 01 ] slip system Xiv =/3, and 
the other ;~ and r angles between N or R and the 
slip direction and slip plane normal, respectively, 
are shown. By considering spherical triangles the 
following relationships can be deduced 

cos~b N = sin/3sin7 (triangle with side 7r/2) (A1) 

cos CR = COS a COS 3' -- sin a sin 7 cos/3 (A2) 

cos ~R = sin a sin/3 (triangle with side n/2).(A3) 

Once the new values ~b~r X~, X~v have been cal- 
culated, the new Euler angles can be found using 

/3' = cos -1 (cos ~tN) (A4) 

a '  = sin -I (cosX~/sin/3'). (Ab) 

The new value o f  7 can be found by using the fact 
that N moves on a great circle towards the slip 
plane normal 1 01-0, so the angle 5 is a constant. 
Now 

sin 5 = sinl3 cos 7/sin ~bN = sin/3' cos 7'/sin 

so 
sin ~' cos 7' = r sin/3 cos 7 

and 
7' = cos -1 (rsin/3cosT/sin/3'). (A6) 
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For the slip systems 2 and 3, 7 is replaced by 3' + 
n/3 and 3' + 2rr/3, respectively, throughout.  

For the prism slip system 4, Equations A1 and 
A2 above still hold, but  now 

cos ;~N = sin/3 cos 3' 
and 

- -cosXn = cos a s i n 7  + sin a cos T cos /3. 

/3' and 7' are recovered by equations A4 and A6, 
but now 

or' = sin -1 (sin a sin/3/L sin/3'). 

Again for systems 5 and 6 3' + 1r/3 and 3' + 27r/3 
are substituted for 7 throughout. 

~olo 
~o~o 

Figure 14 As Fig. 13, showing the angles used in the re- 
covery of the co-ordinates of the 10 i 0 poles from the 
Euler angles. 

Appendix 2. Recovery of pole figures 
Recovery of  the 0 0 0  1 pole figure is straight- 
forward, since the pole position is defined by a '  
and/3'. Recovery of  the 1 0 ]-0 pole figure is a little 
more complex, since there are three 1 0 T 0 poles 
for each crystal. Fig. 14 shows that the angular 
distances of  interest (a, b, and c) are those o f  R,  T 
and N from a typical 1 0 ] -0  pole. Defining the 
angle G = 7 + (n -- 1)Ir/3 n = 1 . . . . .  5 then the 
distance of  the pole from N is 

cos c = sin/~ sin G. 

If  poles having cos c < 0 are rejected then the re- 
maining poles lie with zr/2 of  the centre of  the 
stereographic projection at N. The angular 
distances a and b are given by 

cos a = cos a cos G- -  sin ot sin G cos/3 

cos b = sin a cos G + cos a sin G cos/3. 



From these, the Cartesian coordinates of  the poles 
in the 1 0 ]-0 pole figure are (x, - - y )  where 

x = I cosb I/(1 + cos t )  

y -- Icosa I/(1 + cos t ) .  

Use of the absolute values of  cosa  and cosb  
reflects the three poles about the N T  or NR planes 
into the fourth quadrant. 

The recovery procedures for the 101-5 pole 
figures are of  a similar nature. 
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